Detection of Hohlraum Target Position for Laser Fusion Experiments

نویسندگان

  • A. A. S. Awwal
  • Abdul A. S. Awwal
چکیده

A hohlraum is a cylindrical structure that holds a laser fusion target at the National Ignition Facility. It must be aligned properly for all the 192 laser beams to hit the target and cause a fusion reaction. Video images of the hohlraum are used to align the hohlraum to the required position. A matched filtering based approach is used to locate the circular alignment fiducial of the hohlraum. One of the challenges of the automatic alignment algorithm is the presence of a number of nearly concentric features from which only one will provide the valid position information. The problem is compounded by blurring of relevant features by defocus or insufficient illumination and amplification of non-relevant features. It is shown that to identify the appropriate fiducial; the shape (or size) in addition to amplitude of correlation peak must be considered. Key word: Pattern recognition, image processing, correlation shape, laser alignment

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

Articles you may be interested in Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the ...

متن کامل

Direct-Drive Target Designs for the National Ignition Facility

LLE Review, Volume 79 121 The National Ignition Facility (NIF) is currently under construction at Lawrence Livermore National Laboratory (LLNL). One of the primary missions of the NIF is to achieve fusion ignition by means of inertial confinement fusion (ICF). Two main approaches have been considered for achieving thermonuclear yield in ICF. The first approach, known as indirectdrive ICF,1 encl...

متن کامل

A TIM-Based Neutron Temporal Diagnostic for Cryogenic Experiments on OMEGA

156 LLE Review, Volume 92 Introduction In inertial confinement fusion1 experiments, shells filled with deuterium (D2) or a deuterium–tritium (DT) mixture are heated by either direct laser illumination or soft x-ray radiation in a laser-heated hohlraum. The target is compressed to conditions under which thermonuclear fusion occurs. The most-promising target designs consist of a layered cryogenic...

متن کامل

Proton Temporal Diagnostic for ICF Experiments on OMEGA

230 LLE Review, Volume 96 Introduction In an inertial confinement fusion (ICF)1 experiment, a capsule filled with deuterium (D2) or a deuterium–tritium (DT) fuel is heated by either direct laser illumination or soft-x-ray radiation in a laser-heated hohlraum. The target is compressed to conditions under which thermonuclear fusion occurs. The fusion burn begins with spark ignition of the central...

متن کامل

Symmetric inertial confinement fusion implosions at ultra-high laser energies.

Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hoh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010